If you have been reading my math blog at all, then you know I have been posting my youtube videos here and giving each one a brief description. I am ready to get back in action and prove some angles congruent! One of the easiest ways to prove angles congruent is with knowledge of the **Vertical Angles Theorem**. The vertical angle theorem states that **vertical angles are congruent**.

Vertical Theorem and a Proof of the Vertical Angle Theorm

In the proof of the vertical angles theorem, you have to establish a relationship between angles 1 and 3 and angles 2 and 3. Both pairs of angles are are supplementary pairs, thus their sum is 180 degrees, which can be seen in statement 2 of the above proof. Now that statement 2 is established, you can state that the sum of the measures of angles 1 and 3 is equal to the sum of the measures of angles 2 and 3. The previous is shown in statement 3 in the above proof. Now this equation is really cool, because it can be changed into the measure of angle 1 is equal to the measure of angle 2, which is very close to what must be proved. Since the measures are equal, the angles are also congruent. See statements for and 5 in the above prove.

I hope to incorporate this into my class some how. I will get back to you and let you know.

### Like this:

Like Loading...

Filed under: Geometry, Theorem Proof, Vertical Angles Theorem | Tagged: Geometry, Theorem Proof, Vertical Angles Theorem | 4 Comments »